

DUBAI WORLD CONGRESS FOR SELF-DRIVING TRANSPORT

OCT | 2019

Verification & Validation approaches for Highly Automated Driving (HAD)

Plato Pathrose

Head of Validation ADAS & Autonomous Driving

Visteon Electronics Germany GmbH

Agenda

- Introduction & Overview Visteon as Tier 1
- Agile & Scenario based Testing
- Driver in Loop Testing
- Vehicle Testing
- Test Classification & Acceptance Criteria

Introduction & Overview Visteon as Tier 1 in ADAS & Autonomous Driving

Visteon in ADAS & Autonomous Driving

DriveCore[™] enables fast, controlled and secured algorithm development for autonomous driving

DriveCoreTM

Visteon's Autonomous Driving Platform

- DriveCore[™] Studio: OPEN for Common Development
- DriveCore[™] Compute: Modular Design with SoC Flexibility
- DriveCore[™] Runtime: Safe Communication and Easy Integration in Vehicle

DRIVECORE STUDIO

drive Ore

Compute | Runtime | Studio

Visteon's DriveCore[™] Autonomous Driving Product

Visteon Components

Information Glassification. Genera

Visteon Offerings

ASIL compliance

Agile & Scenario based Testing

Test Strategy & Process to the Lowest Level – V Model Approach

Test Process Flow

Why Agile Verification over Classical V-model Process ?

- V-Model requires all requirements in early phase of the development.
- ADAS / Autonomous Systems being complex, cannot cover all requirements at the early phase of development.
- Normal development time period of the product is approx. 3 yrs or more (End product deployment)
- Since having incremental requirements, it is not possible to execute verification at the end of the Product development.
- Tests to be planned based on Scenarios rather than focusing on millions of kms drive alone.
- Scenarios keeps on incrementing for testing hence continous improvement of test suite and scenario based risk assesment (Monte-Carlo Analysis) to be performed.

Information Classification: General

Scenario Based Testing for Level 3 features (Case study: Highway Pilot)

Different scenarios for operating conditions Driving on the Exit and Entry Ramp for Joining and exiting the Highways

1.a Merging of two entry Ramps on A highway

2.a Entry Ramp followed by Exit Ramp

3.a Parallel Exit Ramps

1.b Merging of two entry Ramps on A highway **2.b** Entry Ramp followed by Exit Ramp

3.b Parallel Exit Ramps

1.a, 2.a, 3.a are a few of the real world scenarios for Ramp Driving which are implemented in the virtual environment in 1.b, 2.b and 3.b respectively www.sacongress.com

•

Parameterization

Use Case

The automatic generation of the variations for the Test scenario Entry Ramp followed by an exit ramp can be explained using the images below :

With Clouds

With Snow

With Rain Overcast

With Rain and Fog

Above are a few variations generated automatically using the ASG concept wherein for the test scenario "Entry ramp followed by an exit ramp" the following parameters were varied for this example:

- Time of the day within a specified range
- Weather conditions like snow , rain with different intensities and combination of both
- Friction of the road within a specific range

etc..

There are many other such parameters which can be automatically varied to cover the multidimensional space of the real scenarios . **www.sdcongress.com**

Driver-in-Loop Testing

- Mimic real vehicle functionality and associated human factors
- High degree of realism of driving environment
- Immersive and realistic Driver-in-Loop (DIL) simulation experience
- Control the Car with steering wheels and pedals
- Provides better understanding of vehicle dynamics
- Vehicle control systems similar to ones on the real roads

www.sdcongress.com

Visteon Vehicle Simulator

Information Classification: General

Vehicle Testing Process (each iteration)

SiL Testing is finished	•System Integration is finished •No critical defects •Software is stable and backward compatible
Open Loop	•Open loop tests are done •No safety related defects present
Test Track/Provin g Ground- Closed loop Testing	 Functional+ System testing is done Less then 20% defects present (than lab environment) No safety related defects + required closed loop mileage is achieved e.g. 1000kms Defect Criticality Analysis is done for public road testing Go/NoGo decision
Public Road Testing- Closed loop	 Low/medium/High Speed test routes for each feature(low, moderate and high traffic situations) Functional and System verification is done Defects reported and tracked No safety related defects + Required closed loop mileage is achieved e.g. 1000kms
Validation Release	 Test reports + Test results published Defects are reported and tracked Less then 2% non critical defects present(comparison with lab based test results)
SW Release to Customer	 Software is released Release notes, results reports and defect lists Provided

Verification & Validation Classification

Validation approach involves 3 levels starting from Level 0 and Level 1 which checks in the perspective of validation and executed based on standards and regulations and also internal expertise in Visteon. Level 2 is verification which mainly focus on the customer requirements.

Level 0 is also considered as the high priority tests which decides the system / software is good to be taken forward for further elaborated testing.

Thank You ! & Questions ?