

AWS paving the way for the future of autonomous driving

Max Cavazzini – EMEA Automotive cavazzin@amazon.com

What do you know about amazon.com?

Unprecedented Scale

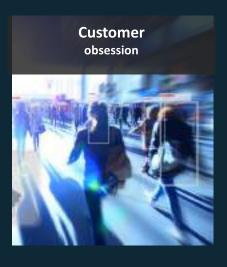
Hyper Speed

Relentless innovation

Customer Obsession

What do you know about Amazon Web Services?

Applying amazon.com concepts to IT Infrastructure

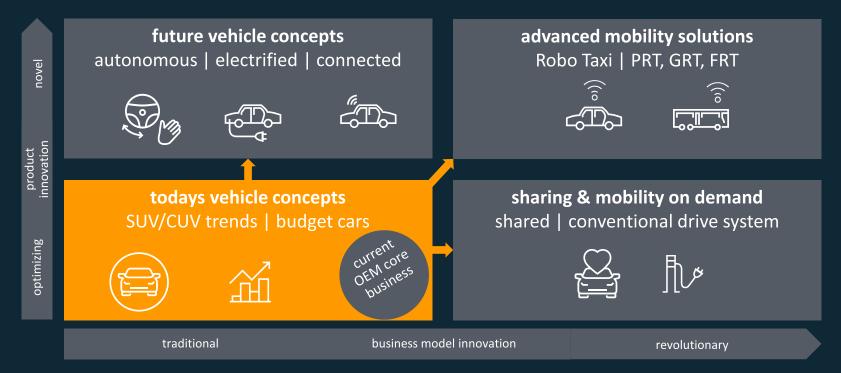

22 regions69 availability zones3 new regions in H1 2020

Infinite IT resources available in minutes

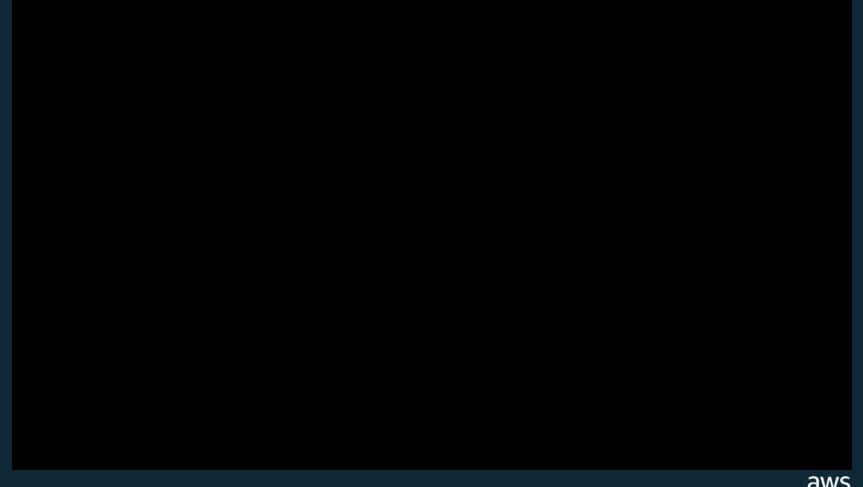
1957 new capabilities in 2018

Reduced prices 73 times since AWS launched in 2006

\$33 Billion Run Rate 41% YoY (Apr '19)


AWS for Automotive

AWS enables our customers and partners to deliver intelligent, personalized brand experiences across the value chain



The digital transformation is disrupting the traditional OEM business models

AV Industry Observations

• \$500B Market by 2026: Allied Market Research

2019 Investments

- Cruise (\$2.25B), Uber ATG (\$1B), Nuro (\$940M)
- o Rivian (\$1.2B), Aurora (\$530M)

- Self-driving trucks (Daimler, Volvo, Waymo, TuSimple, Embark, Zodiak, Pronto.ai, Ike)
- Last mile delivery (Nuro, Amazon Scout)

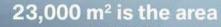
Consolidation

- M&A: Apple + Drive.ai, Uber ATG + Might AI
- Partnerships: Daimler + BMW, VW + Ford/Argo, Waymo + Lyft, FCA + Aurora

RIGHT ON RED LIGHT

POLK ST, SAN FRANCISCO

FULLY AUTONOMOUS (2X SPEED)


Z 0

are being collected. If 200,000 TB of data were stored on DVDs and stacked on top of each other, the resulting tower would be more than 310 miles high. In comparison, the distance from earth to the International Space Station is only about 250 miles.

240,000,000 test kilometers

 are driven to make the technology mass production-ready.

Driving Campus – larger than that of the Sydney Opera House.

1,800 expert developers

are working on the campus.

SAE Levels of Autonomy

LEVEL	NAME	CONTROL	MONITORING VIGILANCE	FALLBACK HANDOFF	OPERATING CONDITIONS
0	Unassisted	Human			
1	Driver Assist	Human and AD System	Human	Human	Some
2	Partial Automation	AD System	Human	Human (0 warning)	Some
3	Conditional Automation	AD System	AD System	Human (adequate warning, assumed 15 seconds)	Some
4	High Automation	AD System	AD System	AD System	Some
5	Full Automation	AD System	AD System	AD System	All

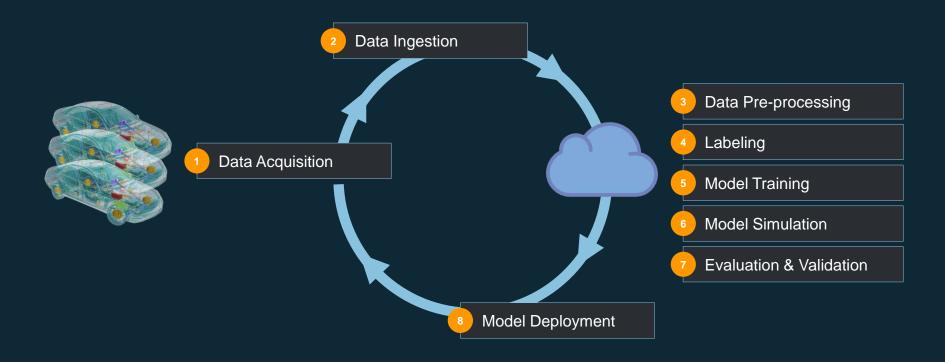
SAE Levels: Impact on Storage & Compute

LEVEL	NAME	CONTROL	Deep Learning Requirement	DEEP ARCHIVE REQUIREMENT	GPUs REQUIRED
0	Unassisted	Human	None	0	0
1	Driver Assist	Human and AD System	None	Less than 1 PB	0
2	Partial Automation	AD System	None	Less than 1 PB	0
3	Conditional Automation	AD System	Significant	1 to 100 PB	1 to 100s
4	High Automation	AD System	More Significant	30 to 400 PB	100s to 1000s
5	Full Automation	AD System	Bigger than you can Imagine	Measured in Exabytes	1000s to 100,000s

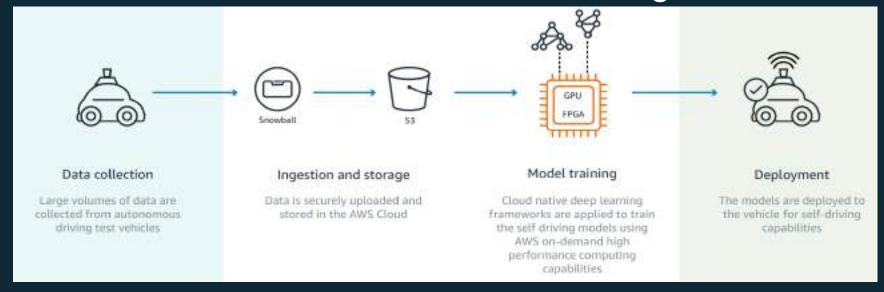
What's your strategy on development?

Challenges for AD Developers

Data Ingestion & Acquisition	3-25 TB per test vehicle per day; 10-125 Vehicle Test Fleets	200 – 600 PB per year	
Data Labeling	Cost, accuracy, and timeline concerns with current data labeling approaches	100s – 1,000s of human data annotators	
Model Development & Training	Distributed data scientist teams developing Perception, Localization, Sensor Fusion, Path Planning, Control	10,000 – 100,000 GPU Cores	
Simulation and Validation	Massive number of pathing requirements	100,000 + GPU Cores	
Model Management & CI/CD	30-50 Data Scientists, Safety Critical Workflows		

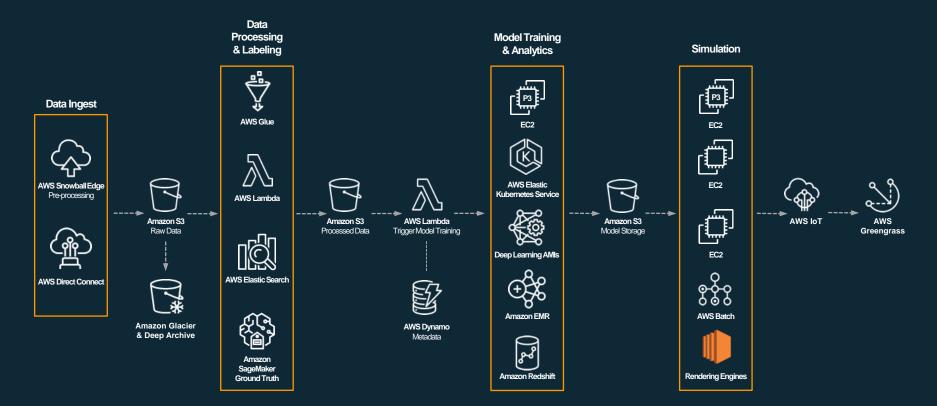

Estimates say that 275 million miles of testing would be required for AVs to demonstrate, with 95% confidence, that their failure rate was at most 1.09 fatalities per 100 million miles – the equivalent of the 2013 US human-fatality rate. To achieve 275 million miles, it would take 100 vehicles, 24 hours a day, 365 days year, at an average of 25 mph, to achieve this goal. – Kalra, Paddock, April 2016, RAND Corporation.

AWS Solution Overview



Typical Autonomous Vehicle Development Workflow

One Platform for all Autonomous Driving Needs

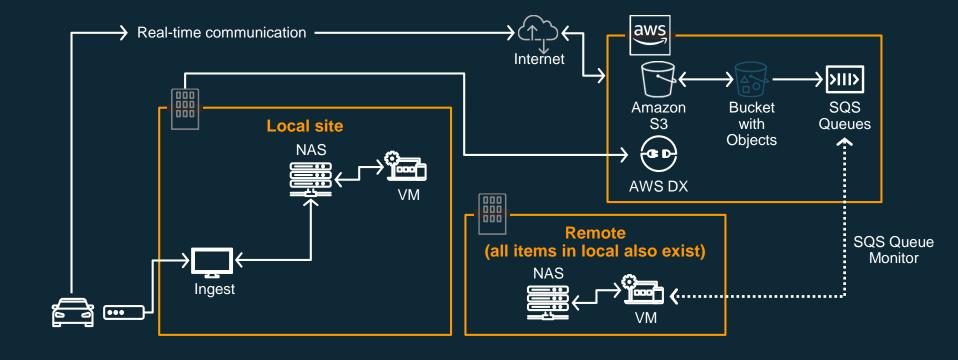


- Petabyte Scale, Low Cost, Secure Data Transfer and Storage Options
- High Performance Compute including GPU and FGPA instances, on-demand
- Optimized popular AI Frameworks
- Al Model Management

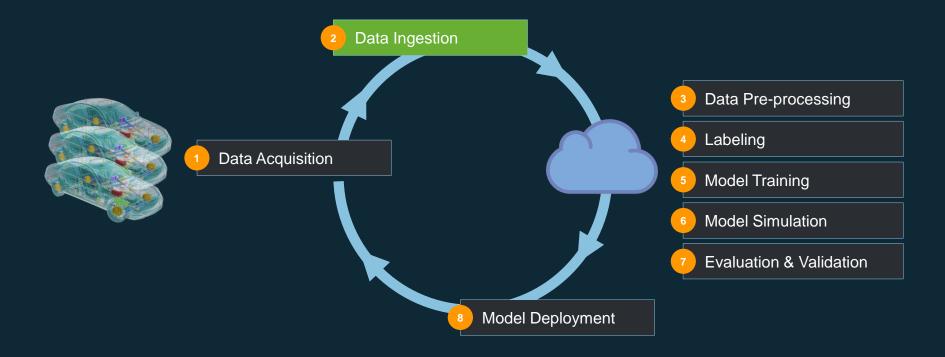
- Serverless Architecture
- Content Delivery with smart compression
- Secure device integration with cloud
- Edge compute

AV Development Reference Architecture

Accelerating automated driving development on AWS


Toyota Research Institute accelerates safe automated driving with deep learning at a global scale on AWS

"Using Amazon EC2 P3 instances, we reduced the time to train our models by 75%. This significantly accelerates our research and development velocity as we can quickly incorporate new data and retrain models, explore ideas, increase model accuracy, and introduce new features faster," says Adrien Gaidon, PhD, Machine Learning Lead, Toyota Research Institute.



Toyota Research Institute – Data Ingestion Pipeline

Typical Autonomous Vehicle Development Workflow

AWS offers the most ways to move data to the cloud

Networks Hybrid Roads

AWS Direct Connect

A private connection between your data center, office, or colocation environment and AWS

Amazon S3 Transfer Acceleration

Up to 300% faster transfers into and out of S3. Ideal when working with long geographic distances

Amazon EFS File Sync

Up to 5x faster file transfers than open source tools. Ideal for migrating data into EFS or moving between cloud file systems

Amazon Kinesis **Firehose**

Capture, transform, & load streaming data into S3 for use with Amazon business intelligence and analytics tools

AWS Snow family

(Snowball, Snowball Edge, Snowmobile)

Secure, physical transport appliances that move up to Exabvtes of data into and out of AWS

APN competency partners

Integrations between 3rd party vendors and AWS services. Ideal for leveraging existing software licenses and skills

AWS Storage Gateways

Hybrid storage that seamlessly connects on-premises applications to AWS storage. Ideal for backup, DR, bursting, tiering or migration

AWS offers the most ways to move data to the cloud

Networks Hybrid Roads

AWS Direct Connect

A private connection between your data center, office, or colocation environment and AWS

Amazon S3 Transfer Acceleration

Up to 300% faster transfers into and out of S3. Ideal when working with long geographic distances

Amazon EFS File Sync

Up to 5x faster file transfers than open source tools. Ideal for migrating data into EFS or moving between cloud file systems

Amazon Kinesis **Firehose**

Capture, transform, & load streaming data into S3 for use with Amazon business intelligence and analytics tools

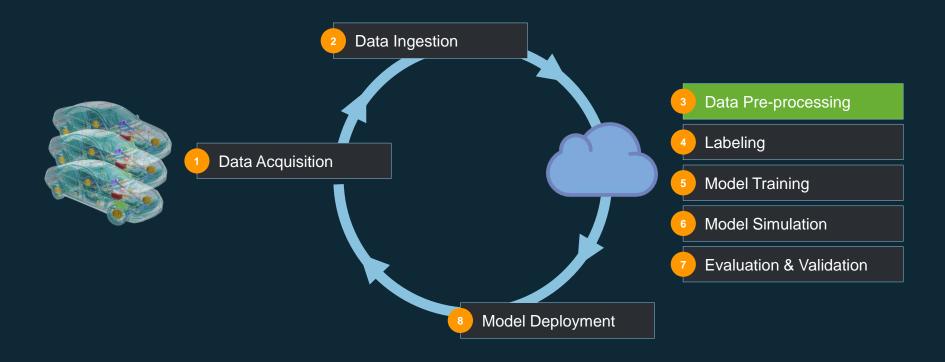
AWS Snow family (Snowball, Snowball

Edge, Snowmobile)

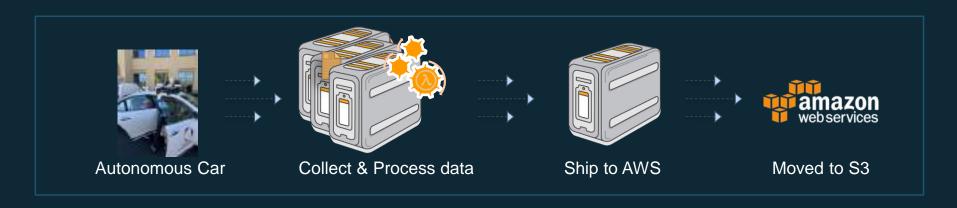
Secure, physical transport appliances that move up to Exabvtes of data into and out of AWS

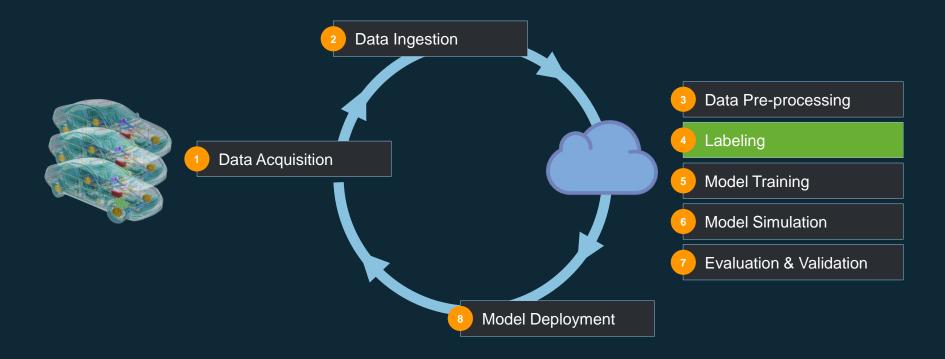
APN competency partners

Integrations between 3rd party vendors and AWS services. Ideal for leveraging existing software licenses and skills


AWS Storage Gateways

Hybrid storage that seamlessly connects on-premises applications to AWS storage. Ideal for backup, DR, bursting, tiering or migration


Typical Autonomous Vehicle Development Workflow


Ingest data from vehicles using Snowball Edge

- Snowball Edge supports the ability to capture data from the vehicles and prepare it for machine learning before it arrives in AWS
- Embedded compute running on Snowball Edge can compress data, organize the vehicle logs, transcode the video, obfuscate faces and license plates (if desired)

Typical Autonomous Vehicle Development Workflow

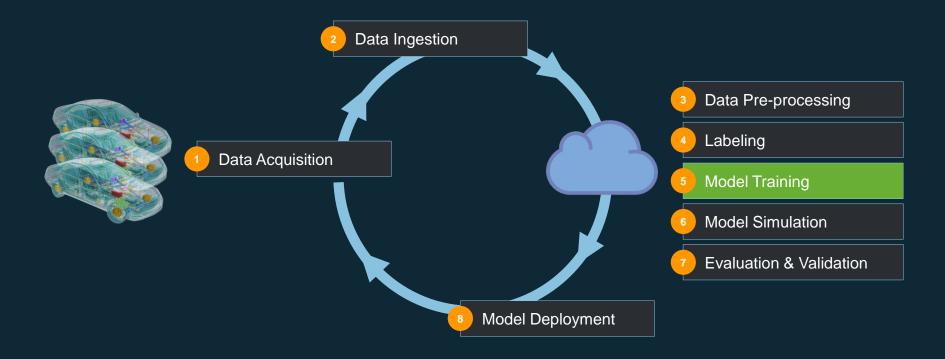
Data Labeling with

amazon mechanical turk

On-Demand Workforce, available when you need it, 24x7

Elastic Workforce, pay only for what you use

Lower Cost Structure, turn fixed costs into variable costs


Quality Management, everything you need to ensure quality results

Typical Autonomous Vehicle Development Workflow

Amazon ML stack: broadest & deepest set of capabilities

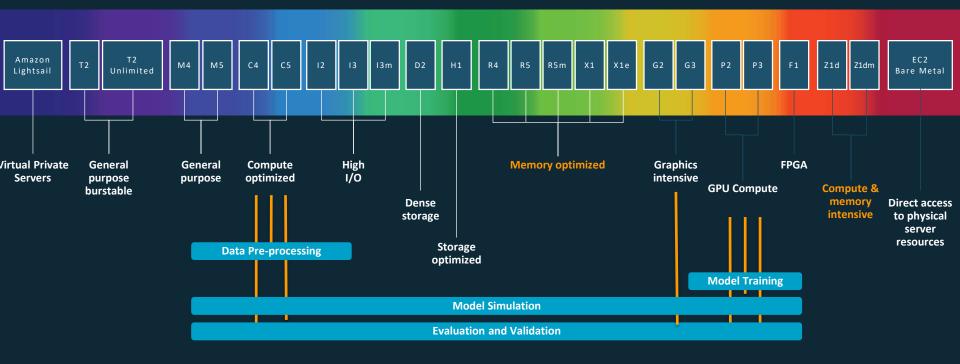
AI Services

VISION	SPEECH	LANGUAGE	CHATBOTS	FORECASTING	RECOMMENDATIONS	
REKOGNITION REKOGNITION TEXTR	T POLLY TRANSCRIBE	TRANSLATE COMPREHEND 8 COMPREHEND MEDICAL	V (∰) LEX	FORECAST	PERSONALIZE	

ML Services

ML Frameworks + Infrastructure

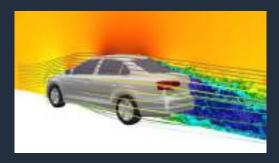
FRAMEWORKS	INTERFACES	INFRAST	RUCTURE							
↑ TensorFlow mxnet	€ GLUON	ĵ	Õ	Ō	*					
PYT <mark>Ö</mark> RCH	K Keras	EC2 P3 & P3DN	EC2 G4 EC2 C5	FPGAS	DL CONTAINERS & AMIs	ELASTIC CONTAINER SERVICE	ELASTIC KUBERNETES SERVICE	GREENGRASS	ELASTIC INFERENCE	INFERENTIA


Personalizing the driving experience

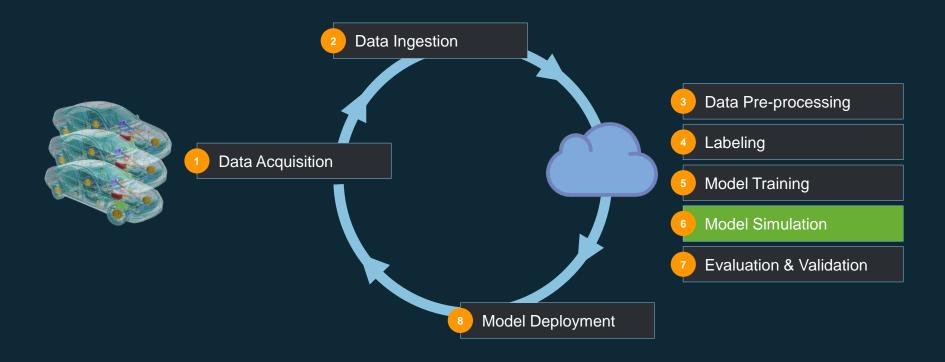
Kia Motors uses Amazon Rekognition for advanced image and video analysis of an in-car camera that detects the driver. Then, the car automatically adjusts driver-assistance features like personalized mirror and seat positioning.

Wide range of Compute Instances for HPC AD Workloads

EC2 Fleet


- · Simplified provisioning
- Massive scale
- · Flexible capacity allocation

Volkswagen Group Research



Volkswagen Group Research Works with Altair on AWS to Accelerate Aerodynamics Concept Design

- Challenge: Many traditional simulations take too long to complete and weaken a car manufacturer's ability to successfully engineer for optimal aerodynamic performance and flow physics while also designing for style.
- Solution: 100 simulation runs each to be turned around within five business days
- Benefit: The team was able to run 200 car shape variants in a time frame that would typically correspond to only a few runs with its current operational tools

Typical Autonomous Vehicle Development Workflow

Data is precious

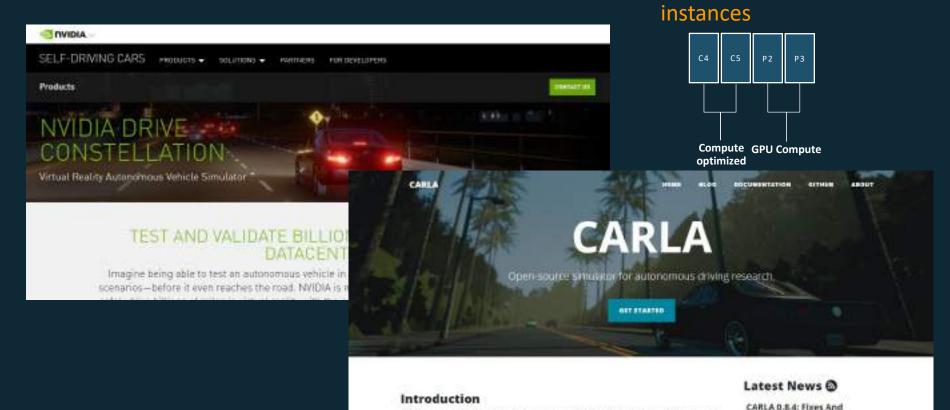
MANUE - Plane Place - 1

Tuesday
April 12, 20:

Autonomous vehicle miles and, under son enough data to clear RAND report.

OF STATE SHAPE SHAPE SHAPE THE PARTY

It takes time to find corner cases...

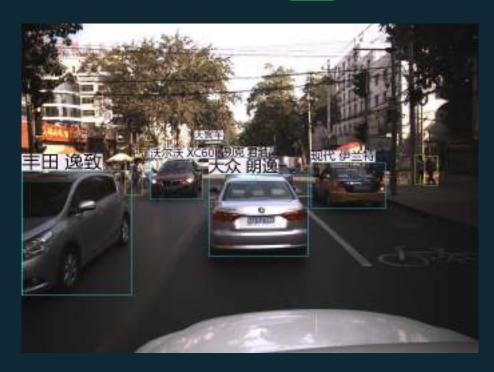

ACT I Transplacement resident Partie.

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserv

Information Classification: General

Several Simulation Solutions

CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets rurban layouts, buildings, vehicles) that


AWS EC2 CPU & GPU

CARLA 0.8.3: Bikes!

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

End-to-end Autonomous Development on AWS

MXNet User 国森 tu Simple

Using deep learning to map a virtual world

Mapillary uses deep learning to create street-level virtual environments by stitching together crowd-sourced photos.

Applied fine-grain computer vision algorithms to combine 142 million user-submitted images, creating nearly 2 million miles of mapped roads.

Accelerated training and inference of deep neural networks for graphic-intensive workloads using AWS EC2 P2 and G2 instances.

Use Caffe and TensorFlow to gain insight from large volumes of unstructured public data to improve global mobility and transportation.

Assisting drone navigation with deep learning

Iris Automation uses computer vision and deep learning to help unmanned aerial vehicles (UAVs) detect objects and avoid collisions.

Analyzes and draws insights from videos captured by drone's cameras in real time—the system has a detection range of over 500 meters, significantly farther than what other systems can currently do.

Uses NVIDIA GPUs on AWS to train deep learning models and a Jetson TX1 onboard the UAV to analyze video capture in real time.

Thank you!

cavazzin@amazon.com

