

DUBAI WORLD CONGRESS FOR SELF-DRIVING TRANSPORT


OCT | 2019

PIARC Task Forces B1 & B2 Connected and Automated vehicles : challenges and opportunities for road operators

Martin Thibault, P Eng.

Vice president Transportation Quebec

Stantec Consulting Ltd

Agenda

- 1. What is PIARC?
- 2. TF B.1's Mission and Objectives
- 3. Input Data & analysis
- 4. Opportunities & Challenges
- 5. TF B.2's at a Glance
- 6. Conclusion

PIARC?

The Association

- Stands for "Permanent International Association of Road Congresses"
- The World Road Association-PIARC , is a non-political, non-profit association established in 1909
- It brings together the road administrations of 122 governments
- Mission to promote international cooperation on issues related to roads and road transportation
- <u>www.piarc.org</u>

PIARC

2016 to 2019 cycle

• World Congress each 4 years

- Strategic plan with 5 focus areas
 - A Management and finance
 - **B** Access and mobility
 - C Safety
 - D Infrastructure
 - E Climate Change, Environment and Disasters

PIARC

Focus area B – Access and mobility

- B.1 Road Network Operations / ITS
- B.2 Winter services
- B.3 Sustainable multimodality in urban areas
- B.4 Freight
- TF B.1 Connected vehicles : Challenges and opportunities for road operators
- TF B.2 Automated vehicles: Challenges and opportunities for road operators

mormation Classification: General

Task Force B.1 Connected vehicles : challenges and opportunities for road operators

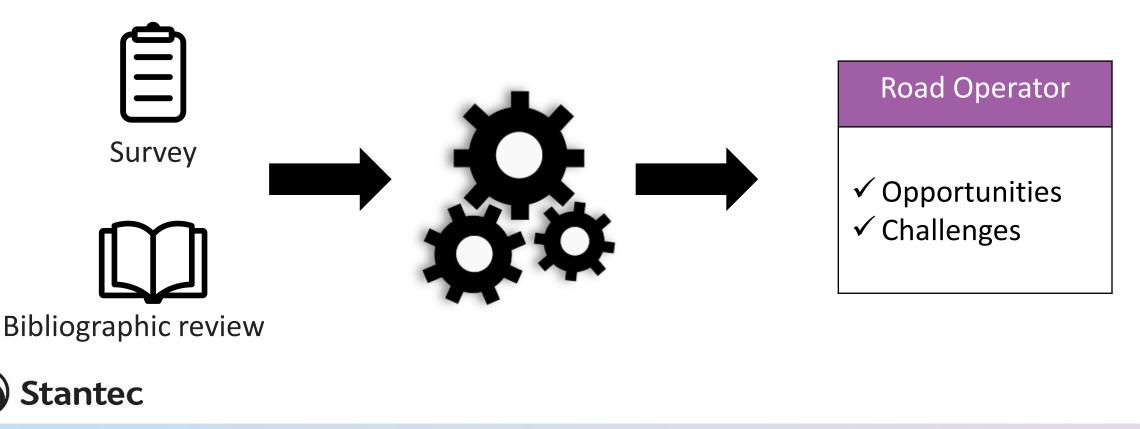
29 Å

18

Composition

- 29 Experts covering 18 countries across the globe
- Chair Eric Ollinger French Ministry of Transportation
- Started June 2016
 - Ended July 2018

Setting the frame


- Goal Identify major considerations in the development and deployment of V2I and V2V communication in road design and operations
 - From a road operator's point of view
 - Identify best practices regarding the main challenges and formulate recommendations for countries or regions who would like to step in
 - Highways are in the main focus
- Output : Report outlining key topics being explored and with references to other organizations.

TF B.1

CV technology in a global context

• The work is based on surveys carried out on 23 existing projects all over the world, completed by a review of the existing literature

Methodology

- A total of 47 reference documents were collected and reviewed, including:
 - 23 Connected ITS project surveys (40+ questions)
 - 13 Connected ITS project description reviews
 - 4 documents from previous PIARC cycles
 - 7 reference documents from countries with various deployment strategies or research activities and also from European working groups

w.saconaress.com

Task Force B.1 Input Data and analysis

Connected Vehicles ??

- What do we mean by connected driving?
- An exchange of information between a vehicle and :
 - Other vehicles : sensors embedded in the vehicles gather and transmit them automatically to vehicles behind (V2V)
 - The infrastructure : the same information is received by the road operator (V2I) ; the road operator can also send information directly displayed in the vehicle (I2V)
 - Other road users (V2Others)
- This is also called Cooperative Intelligent Transport Systems (C-ITS) or V2X.

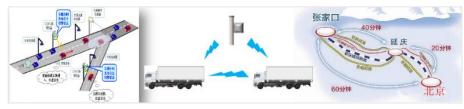
vw.sdconaress.com

Projects Sample

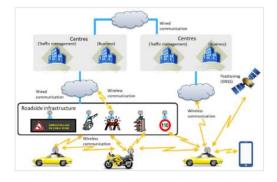
Connected Vehicle Pilots Expediting the implementation of connected vehicle technology. Learn more.

US: Connected Vehicle Pilot

Deployment Program


Information Classification: General

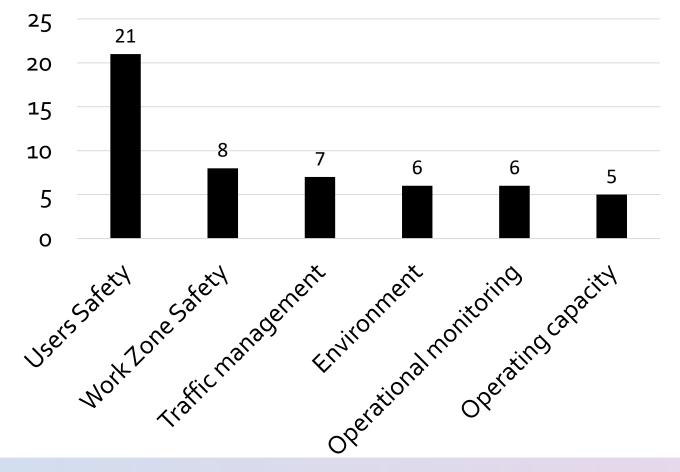
TF B.1


Europe: C-Roads

South Korea: Dajeon and Sejong city

China: Bejing, Shanghai, Chongqing

Australia


Japan: Smart use of road project

Benefits Expected by Operators

- Benefits expected from the projects are grouped into the following three main categories:
 - Safety (and security)

naress.com

- Mobility
- Environment

Information

TF B.1

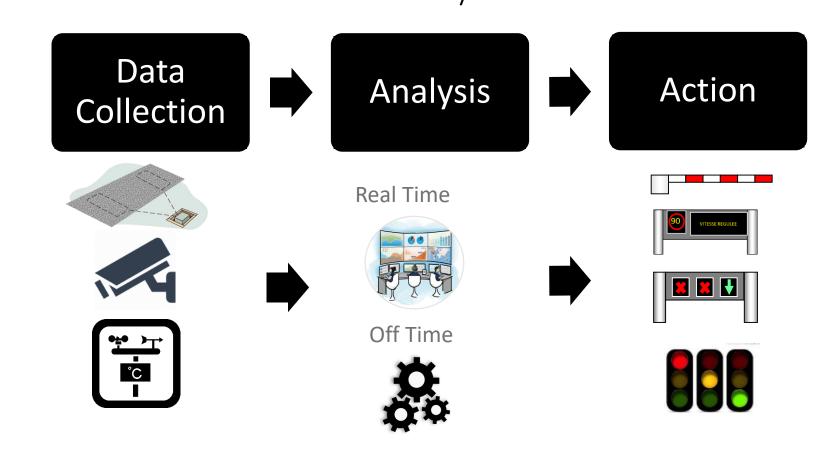
Services provided to users

	Road Work	15
 Priority of emergency vehicles 	Probe vehicle data	13
 Protection of vulnerable users 	Weather	12
	In-Vehicle signage	12
	Traffic Jam	11
	Speed limit	10
	Slow Vehicle	10
Stantec	Intersection safety	9

Communication Standard

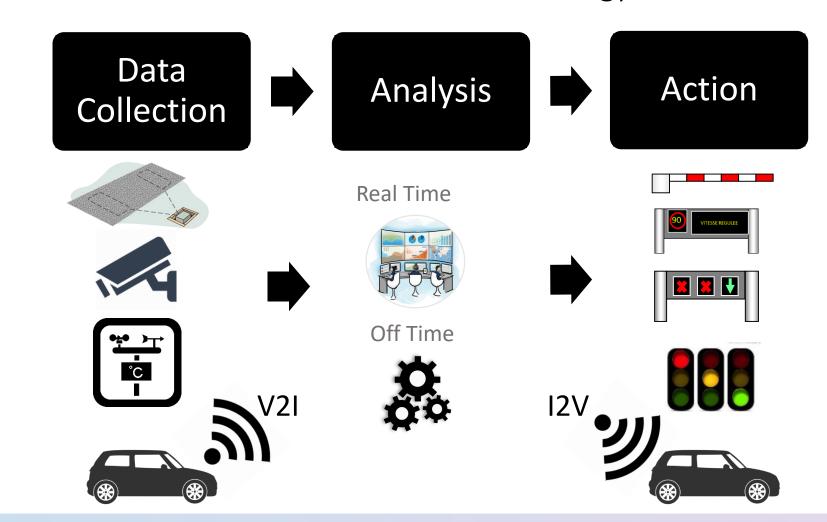
TF B.1

'ess.com


Information Classification: General

 ITS-G5 in Europe (it's not 5G!!) 	ITS-G5 5.9GHz	16
• 5.9/5.8 GHz DSRC in Asia	3G/4G	11
	DSRC 5.9GHz	3
	DSRC 5.8GHz	1
Stantec	5G	
www.adooparooo.oom		

Task Force B.1 Opportunities and Challenges



Why investing in Connected technology Today

Why investing in Connected technology With Connected technology

Information Classification: General

Why investing in Connected technology

With Connected technology

Services	Data
Basic - PVD	Speed, position
Extended - PVD	Speed, position, +++

Why investing in Connected technology TF B.1 -Opportunities With Connected technology Data Action Analysis Collection Services Messages Green Light Optimal Speed Advisory GLOSA **Road Works Warning** RWW **IVSL** In vehicle speed limit In vehicle Signage – virtual VMS IVS Stantec

GLOSA example

• GOAL – Increasing mobility. Providing advice to optimize the way vehicles approach and pass through an intersection.

Advice to slow down to 27km/h to catch the green light

Challenges of the implementation

- <u>Services to deploy first</u>
- Interoperability
- High penetration path
- Business models
- <u>Choice of technology</u>
- Access to quality data
- Security, privacy and data protection
- Operator's organization

Information Classification: General

Stantec

TF B.1 -Challenges

Services to deploy first (from EU C)

#	Day 1 Services			Bundle
1	Emergency electronic brake light	V2V	Safety	1
2	Emergency vehicle approaching	V2V	Safety	1
3	Slow or stationary vehicle(s)	V2V	Safety	1
4	Traffic jam ahead warning	V2V	Safety	1
5	Hazardous location notification	V2I	Motorway	2
6	Road works warning	V2I	Motorway	2
7	Weather conditions	V2I	Motorway	2
8	In-vehicle signage	V2I	Motorway	2
9	In-vehicle speed limits	V2I	Motorway	2
10	Probe vehicle data	V2I	Motorway	2
11	Shockwave damping	V2I	Motorway	2
12	GLOSA / Time To Green (TTG)	V2I	Urban	3
13	Signal violation/Intersection safety	V2I	Urban	3
14	Traffic signal priority request by designated vehicles	V2I	Urban	3

TF B.1 -Challenges

Services to deploy second (from EU C)

#	Day 1.5 Services	Bundle			
1	Off street parking information	V2I	Parking	4	
2	On street parking information and	V2I	Parking	4	
	management				
3	Park & Ride information	V2I	Parking	4	
4	Information on AFV fueling & charging	V2I	Smart Routing	5	
	stations				
5	Traffic information and smart routing	V2I	Smart Routing	5	
6	Zone access control for urban areas	V2I	Smart Routing	5	
7	Loading zone management	V2I	Freight	6	
8	Vulnerable road user protection	V2Others	VRU	7	
	(pedestrians and cyclists)				
9	Cooperative collision risk warning	V2V	Collision	8	
10	Motorcycle approaching indication	V2V	Collision	8	
11	Wrong way driving	V2I	Wrong Way	9	

Interoperability

- To ensure that the same standards and specifications are used when deploying systems and hardware
- Between provinces and with US States
- Significant coordination is required between road operators, car manufacturers and Telco carrier to ensure interoperability;
- The relationship between the required technology and the services being deployed (both now and in the future) needs to be understood.

Choice of Technology

Short Range Communication (DSRC)

PROS

Most suitable to broadcast tactical information that needs to be spread **quickly** and **very near** to the information location. Requires a large network of RSU, which implies **significant investment** and the need for **open standards** in order to limit technological obsolescence

Choice of Technology

Long Range Communication (3G/4G)

PROS

Highly suited to strategic information broadcasts and the coverage and capacity of cellular networks are growing as technology continues to evolve Restricted data transmissions rates can be an obstacle in some locations for users

Choice of Technology

Wide area broadcast (Digital Audio Broadcasting +)

PROS

it is already generally widespread and installed in most parts of the world This communication technology requires specific devices

Due to the varying requirements for different CV services and applications, the open hybrid approach may be the most appropriate scenario to allow future growth.

TF B.1 -Challenges

Access to Quality Data

- Quality requirements
- Collection processes
- Quality assurance processes and attributes
- Data accessibility

Opened and shared the data sources among the different CV players would bring many benefits

Stantec

- Improvements to data quality through cross checking
- Comparisons and validations
- Support for a wider range of existing and new applications through the aggregation of different datasets
- The generation of new data-related revenue streams

Task Force B.2 - Automated vehicles : challenges and opportunities for road operators

TF B.2

Automated vehicle ??

	SÆ LEVEL 0	SÆ LEVEL 1	SÆ LEVEL 2	S4E LEVEL 3	SÆ LEVEL 4	SÆ LEVEL 5	
What does the human in the	You are driving whenever these driver support features are engaged – even if your feet are off the pedals and you are not steering			You are not driving when these automated driving features are engaged – even if you are seated in "the driver's seat"			
driver's seat have to do?	You must constantly supervise these support features; you must steer, brake or accelerate as needed to maintain safety		When the feature requests, you must drive	These automated driving features will not require you to take over driving			
??	These are driver support features			These are automated driving features			
What do these features do?	These features are limited to providing warnings and momentary assistance	These features provide steering OR brake/ acceleration support to the driver	These features provide steering AND brake/ acceleration support to the driver	under limited conditions and will can not operate unless all required vehi		This feature can drive the vehicle under all conditions	
Example Features	 automatic emergency braking blind spot warning lane departure warning 	 lane centering OR adaptive cruise control 	 lane centering AND adaptive cruise control at the same time 	• traffic jam chauffeur	 local driverless taxi pedals/ steering wheel may or may not be installed 	 same as level 4, but feature can drive everywhere in all conditions 	

www.sdcongress.com

Stantec

Automated vehicle - report structure

- From a road operator's point of view, challenges and opportunities
 - Physical Infrastructure
 - Digital Infrastructure
 - Connectivity
 - Digital maps and positioning
 - Data
 - Road Network Operation
 - Responsibility and Financing
 - Social Issues

Conclusion

TF B.1 & TF B.2

Conclusion

- Many opportunities offered by CV technology for road operators,
 - In terms of road safety, road network operations, traffic information, asset management....
- The question is where to start ?
 - Based on experience from the various pilot from all over the world
 - Start small and learn by doing
 - Deploy a few of the most mature services (Day1 services)
 - The section in the report on the pros and cons of each technology can help make the best choice

nformation Classification: General

TF B.1 & TF B.2

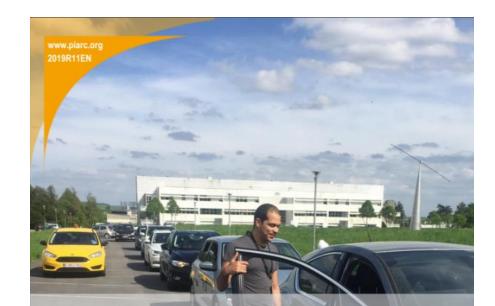
Conclusion

- Security and privacy are important challenges that must be tackled with appropriate experts
- But the key point is not technical, it is to involve all relevant stakeholders and consider seriously the social aspect
- Road operators cannot deploy the technology by themselves, they need to work in close relationship with car manufacturers and telecom carrier who will be delivering the service to the driver

The Report

• The final report of theTF B.1 is available

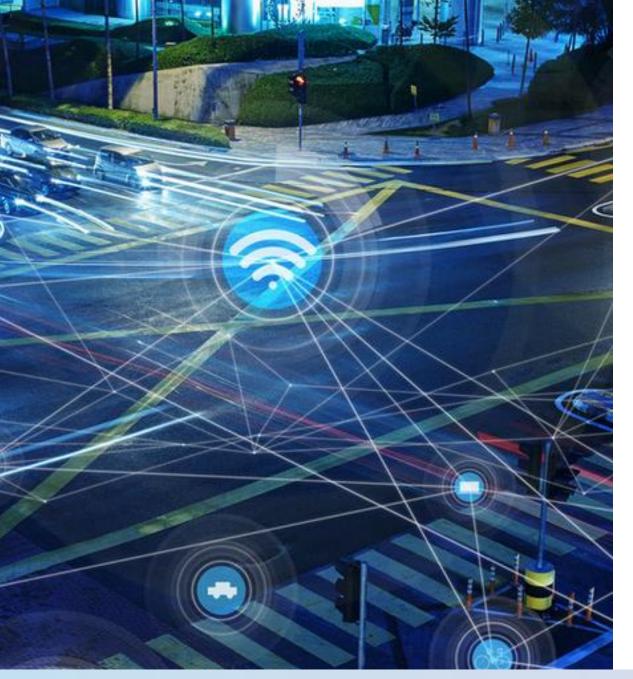
on:


https://www.piarc.org/en/publications/

technical-reports/

• Search for : 2019R11EN

TF B.1



CONNECTED VEHICLES

CHALLENGES AND OPPORTUNITIES CFOR ROAD

TASK FORCE B.1 ROAD DESIGN AND INFRASTRUCTURE FOR INNOVATIVE TRANSPORT SOLUTIONS

DUBAI WORLD CONGRESS FOR SELF-DRIVING TRANSPORT

15 - 16 OCTOBER 2019

Thanks for your Attention !

Martin Thibault, P Eng. Vice president Transportation Quebec Martin.Thibault@Stantec.com

