

DUBAI WORLD CONGRESS FOR SELF-DRIVING TRANSPORT

OCT | 2019

Identifying safety benefits of autonomous taxi by analyzing the human factor

Eng. Mohamed Mahboob

Phd Student, The British University in Dubai

Prof. Bassam Abuhijleh

Dean of Engineering and IT, The British University in Dubai

www.sdcongress.com

AGENDA

- Background
- Introduction
- Motivation
- Problem Statement
- Research Question
- Aims and Objectives
 - Methodology
 - Results
 - Discussion
 - References

Background

Challenges of regulating the autonomous Taxi Dubai's vision on Autonomous vehicles

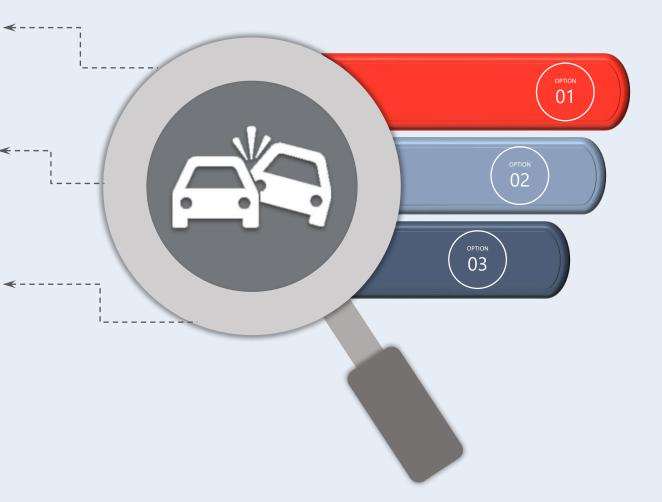
0

REAL PROPERTY.

 $\overline{\bigcirc}$

Safety Significance of Autonomous Taxi

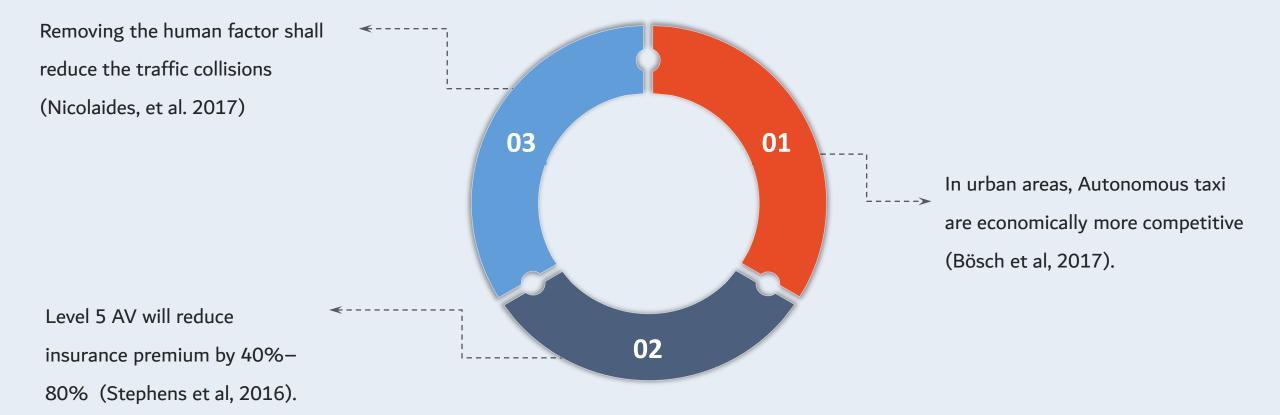
Taxi Drivers Challenges and safety


Introduction - Taxi driver challenges

- 94 % of critical pre-collision caused by drivers (NHTSA)
- Distractions, overspeed, disobedience of traffic rules and misjudgment of road conditions (Diller, et al. 2014).
- Risk factors are Driving for longer hours, different routes, occupational health problems (Wang, Y, Du and Mao, 2015).
- Dubai Taxi is one of the safest in the world at 0.23 accidents per 100 thousand km (KhaleejTimes, 2017).
- RTA safety investments includes driver monitoring systems, speed cap and brake-plus system.

Introduction - Statistical Analysis for accidents studies

- Statistical analysis is used to investigate root causes of accidents and for studying appropriate regulatory policies (Mannering & Bhat, 2014)
- Factors studied: Drivers, roads and vehicles using Chi-square, T,and the F-test (Abbas ,2004)
- Taxi driver fatigue and traffic accidents are correlated(Burgel et al, 2012).



Introduction - Autonomous Level

Introduction – AV expected benefits

Introduction - AV expected limitations

3

1

Occasionally, the AV system has to make decisions based on ethical considerations (Lin, 2015).

AV will only decrease the probability of accidents (Marchant & Lindor 2012).

AV challenges are hacking, system or hardware failure (Kaur & Giselle, 2018).

MOTIVATION

Research Question

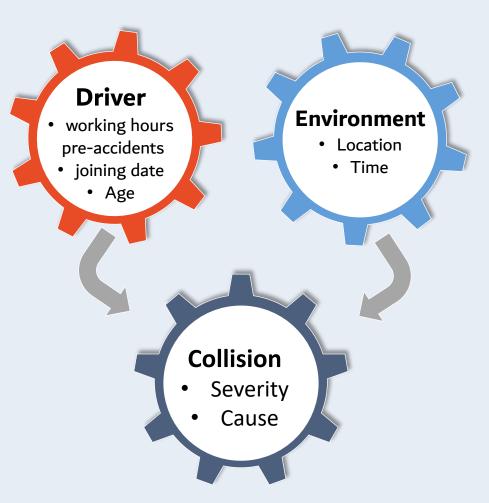
1- What are the key benefits of deploying autonomous taxi for traffic collision avoidance

What are the human factors that impact traffic Collison for taxi industry

Sub QuestionWhat is the
autonomo2autonomo

What is the baseline for the Benefits of autonomous taxi for traffic collision avoidance

Methodology - Statistical Analysis


Study main characteristics that causes accidents using statistical tests

Data : traffic cases between 2016-2017 taxi driver faulty as per police report

Analysis will justify road section that will be analyzed by simulation

Methodology - Selection Justification

Explain traffic collision current status

Data Availability

Provide simulation model real-life data to evaluate expected benefits

Methodology – Data

Variable	Туре	Units	Explanation	Note
Driver ID	nominal	Numbers	Distinguish employee ID	Recently joined drivers have larger ID numbers
Driver's Age	Scale	years	Driver age at the time of traffic collision	Range 20 - 65
Driver's experience	Scale	years	Driver experience at the time of collision	Range 0 - 22
Injury	nominal	0/1	Injuries due to traffic collision	0 is uninjured
				1 is injured
Accident Date	Ordinal	Dd/mm/yyyy	Date of occurrence	Between 1^{st} of Jan 2016 and 23-OCT-2017
Accident Reason	nominal	R1 to R10	Collision cause according to police report	To avoid confusion, some reasons were grouped
Accident Location	nominal	0 to 182	Location on the road	Indicates location of traffic collision
Damage location on	nominal	C1 to c12	Rear, front, right, etc.	Location of damage per police report
Unit				
Accident Level	ordinal	1 to 4	From minor to total loss	According to the insurance company's report
Driving time	Scale	hh:mm:ss	Time between signing on and off. Calculates duty time	Some drivers forgets to sign off causing inaccurate time input.

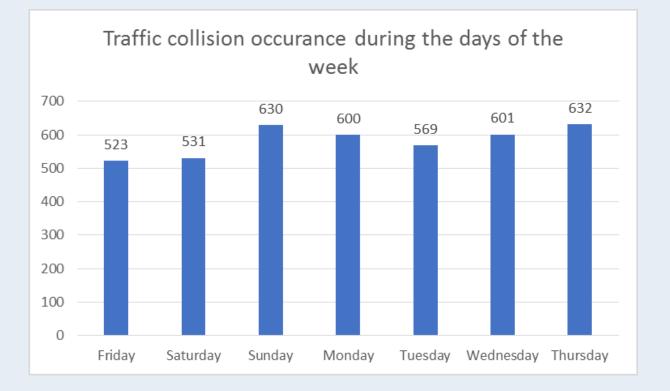
Results – Descriptive statistics

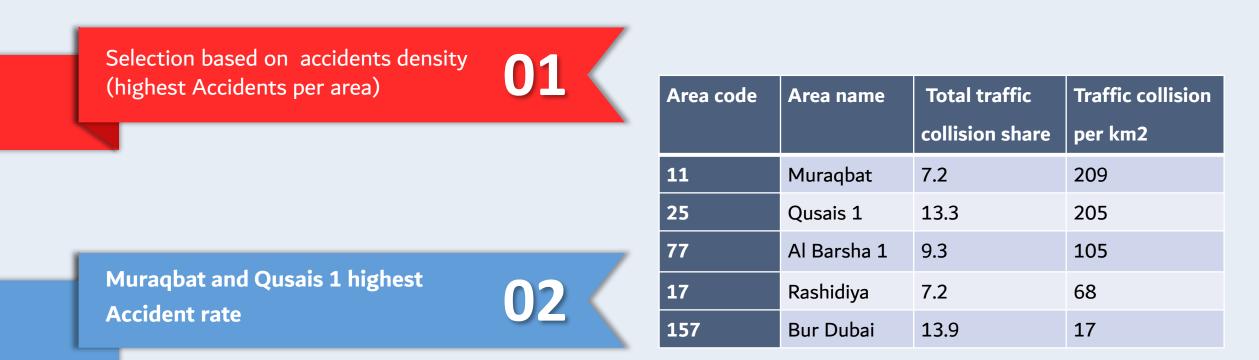
Most of the drivers are young considering mean, median and range.

					Std.
Variable	Minimum	Maximum	Mean	Median	Deviation
Accident Level	1	4	1.34	1	.756
exp-TOA (years)	0	22	2.83	1	4.100
age-TOA (years)	21	65	34.32	33	9.175

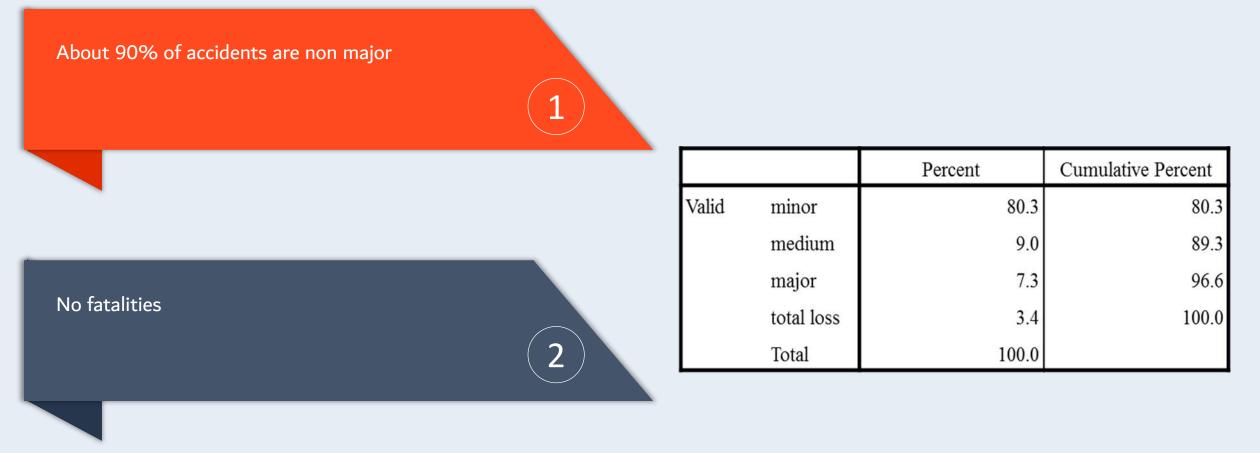
Most accidents are injury free and no fatalities

		Cumulative
	Percent	Percent
Non-injury	99.8	99.8
Injury	.2	100.0


Results – weekday analysis


Accidents increases at the start and end of the working days

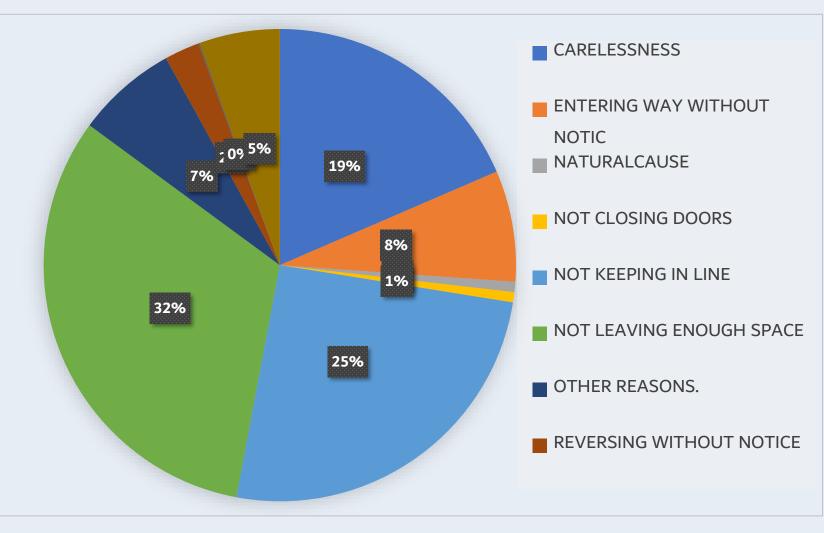
02


Decline in weekend

Results – Accidents locations

Results – Accident Level

Results – Reason of accident


Outcome based on police report

(3)

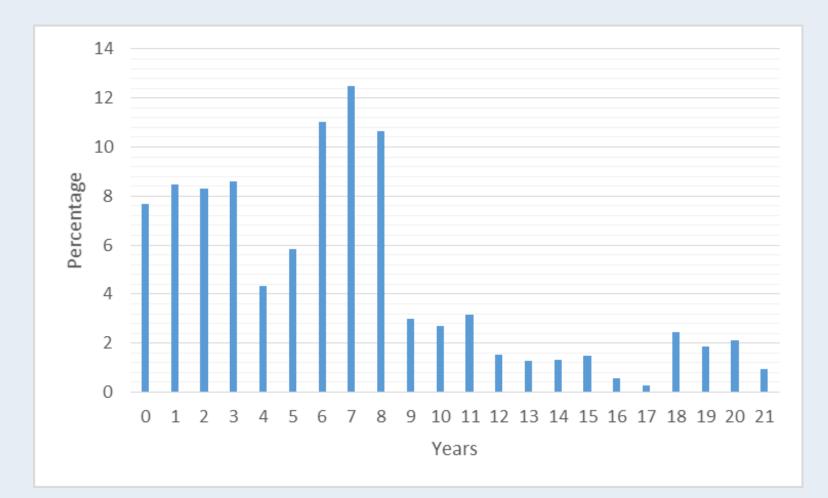
Not keeping enough distance ,not keeping in line and carelessness contributes to 76%.

Most of the reasons above are related to human errors

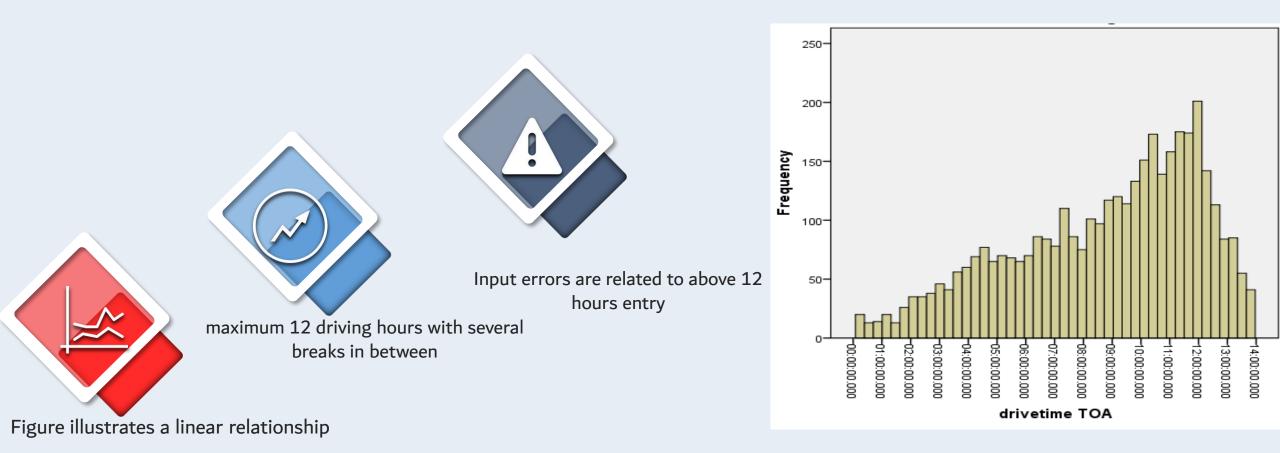
Results – Age Group

Mean age is 34 years old

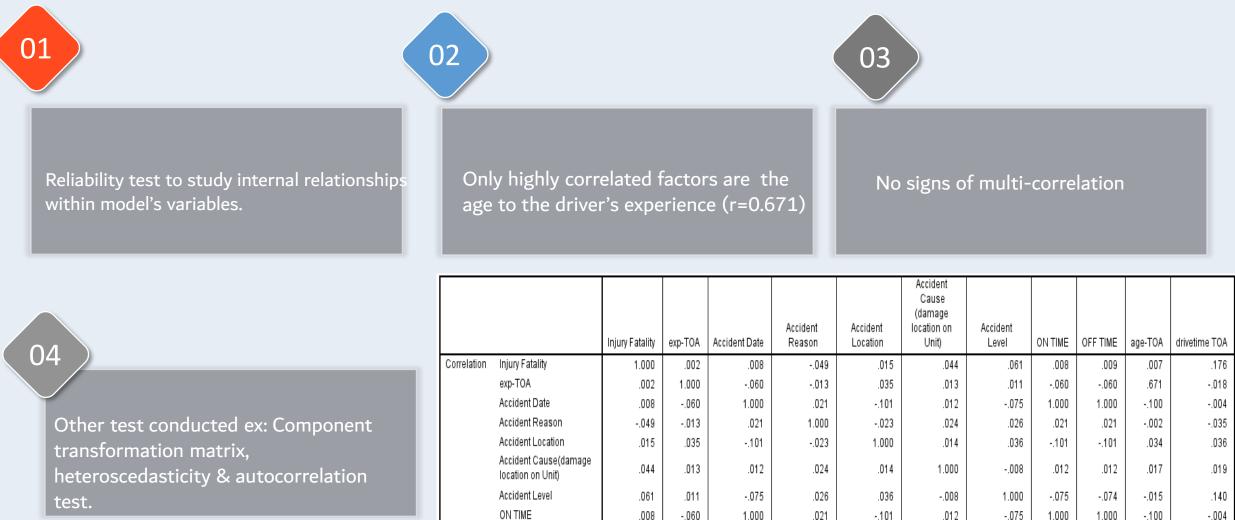
Drivers aged over 46 contributed to 13.6 % of the traffic collisions



Data is not age normalized


Age group	Percent
21-25	18.40431
26-30	22.46696
31-35	20.53353
36-40	14.83113
41-45	10.13216
46-50	7.684777
51-55	3.230543
56-60	1.933431
61-65	0.783162
Total	100

Results – Overall experience distribution of taxi drivers


More than third of the taxi drivers (34.2%) have between 6-8 years of taxi driving experience in Dubai 25% of taxi drivers have less than **3years of** experience.

Results – Drivetime

Results – Data reliability

.009

.007

.176

-.060

.671

-.018

1.000

-.100

-.004

.021

-.002

-.035

-.101

.034

.036

.012

.017

.019

-.074

-.015

.140

1.000

-.100

-.004

1.000

-.100

.000

-.100

1.000

.002

.000

.002

1.000

a. Determinant = .000

b. This matrix is not positive definite.

drivetime TOA

OFF TIME

ade-TOA

Results – Hypothesis test 1 (ANOVA)

	Sum of Squares	df	Mean Square	F	Sig.
Between	372129787387.503	3	124043262462.501	27.668	.000
Groups	012120101001000	5	12 10 10202 102.001	21.000	.000
Within Groups	18300887977085.820	4082	4483314056.121		
Total	18673017764473.324	4085			

Results – Hypothesis test 2 (Chi-Square Tests)

2

Relationship between the location of traffic collision and passengers injuries

significance is 0.004, reject the null hypotheses and assume a relationship.

Asymptotic Value df Significance (2-sided) Pearson Chi-Square 178.469 131 .004 Likelihood Ratio 21.707 131 1.000 Linear-by-Linear Association .351 .868 N of Valid Cases 4086

Results – Hypothesis test 3 (Ordinal Regression)

Fail to reject hypothesis and assume model improves ability to predict 01 02 03

Accident reason with lowest odds is number 6 (reverse without notice) indicates that its usually associated with accidents of lower level. Natural causes (number 7) and not leaving enough space causes more serious accidents

How accident level can be

predicted by accident reason,

driver's experience and age

							95% Confidence				
		Estimate	Std. Error	Wald	df	Sig.	Inte Lower Bound	rval Upper Bound	Exp_B	Lower	Upper
	[AccidentLevel = 1]	-0.397	0.774	0.263	1	0.608	-1.914	1.12	0.673	0.148	3.066
Threshold	[AccidentLevel = 2]	0.355	0.774	0.211	1	0.646	-1.162	1.872	1.426	0.313	6.504
	[AccidentLevel = 3]	1.71	0.777	4.84	1	0.028	0.187	3.233	5.527	1.205	25.343
	ageTOA	0.025	0.013	3.523	1	0.049	-0.001	0.051	1.025	0.999	1.052
	ехрТОА	-0.012	0.006	3.788	1	0.048	-0.024	0	0.988	0.977	1
	[AccidentReason=R1]	-1.093	0.768	2.029	1	0.154	-2.597	0.411	0.335	0.074	1.509
	[AccidentReason=R10]	-1.429	0.769	3.453	1	0.063	-2.937	0.078	0.239	0.053	1.081
	[AccidentReason=R2]	-2.121	0.763	7.741	1	0.005	-3.616	-0.627	0.12	0.027	0.534
	[AccidentReason=R3]	-1.072	0.758	1.997	1	0.158	-2.558	0.415	0.342	0.077	1.514
Location	[AccidentReason=R4]	-1.662	0.762	4.758	1	0.029	-3.156	-0.169	0.19	0.043	0.845
	[AccidentReason=R5]	-1.768	0.778	5.163	1	0.023	-3.294	-0.243	0.171	0.037	0.784
	[AccidentReason=R6]	-2.672	0.853	9.815	1	0.002	-4.344	-1	0.069	0.013	0.368
	[AccidentReason=R7]	3.346	0.89	14.138	1	0	1.602	5.09	28.391	4.962	162.431
	[AccidentReason=R8]	-22.831	0		1		-22.831	-22.831	0	0	0
	[AccidentReason=R9]	0			0				1		

Discussion

Human factor relevant for most taxi accidents

Maintain experienced taxi drivers

Drive time cap policy is effective

AV systems are expected reduce accidents greatly.

Further simulation to validate assumptions.

References

- Abbas, K.A., 2004. In-depth statistical analysis of accident databases. Part 2: A case study. Advances in Transportation Studies, 4.
- Bösch, P.M., Becker, F., Becker, H. and Axhausen, K.W., 2017. Cost-based analysis of autonomous mobility services. Transport Policy.
- Huang, F., Liu, P., Yu, H. and Wang, W., 2013. Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections. Accident Analysis & Prevention, 50, pp.1014-1024.
- Katrakazas, C., Quddus, M.A. and Chen, W.H., 2017. A new methodology for collision risk assessment of autonomous vehicles.
- Kirilenko, A., Kyle, A.S., Samadi, M. and Tuzun, T., 2017. The Flash Crash: High-Frequency Trading in an Electronic Market. The Journal of Finance.
- Li, Z., Chitturi, M., Zheng, D., Bill, A. and Noyce, D., 2013. Modeling reservation-based autonomous intersection control in vissim. Transportation Research Record: Journal of the Transportation Research Board, (2381), pp.81-90.
- Miyoshi, H., 2017. Economics of lane-departure prevention technologies: Benefits resulting from reduced traffic-accident losses and effects of mandatory installation policies.
- Otto-Banaszak, I., Matczak, P., Wesseler, J. and Wechsung, F., 2011. Different perceptions of adaptation to climate change: a mental model approach applied to the evidence from expert interviews. Regional environmental change, 11(2), pp.217-228.
- Stephens, T.S., Gonder, J., Chen, Y., Lin, Z., Liu, C. and Gohlke, D., 2016. Estimated bounds and important factors for fuel use and consumer costs of connected and automated vehicles (No. NREL/TP-5400-67216). National Renewable Energy Lab.(NREL), Golden, CO (United States).
- Lin, P., 2015. Why ethics matters for autonomous cars. In Autonomes fahren (pp. 69-85). Springer Vieweg, Berlin, Heidelberg.

Any Questions?

Thank you for your listening